
Tables of 64-bit Mersenne Twisters

TAKUJI NISHIMURA
Keio University

We give new parameters for a Mersenne Twister pseudorandom number generator for 64-bit
word machines.

Categories and Subject Descriptors: G.3 [Mathematics of Computing]: Probability and
Statistics—Random number generation

General Terms: Algorithms

Additional Key Words and Phrases: Finite fields, k-distribution, linear recurrence, Mersenne
Twister, random rumber generation, 64-bit

1. INTRODUCTION
The Matsumoto and Nishimura [1998] Mersenne Twister (MT) is an
algorithm for generating uniform pseudorandom numbers is based on a
linear recurrence over the two-element field F2, and is a special case of the
multiple-recursive matrix method of Niederreiter [1993; 1995]. MT has the
following properties: (1) long period, (2) efficient use of memory, (3) good
k-distribution property (see Section 3), and (4) fast generation.

In a previous article by Matsumoto and Nishimura [1998], only 32-bit
parameters were given. In this article , we give 64-bit parameters, which is
practical because (1) 64–bit machines are growing in popularity, (2) they
fit the sizeable demand for real numbers with 64-bit precision, and (3) the
number of nonzero terms in a characteristic polynomial has increased to
roughly twice as many as the 32-bit MT.

We also obtained a modified version by adding two more reference
vectors, which dramatically increases the number of nonzero terms in the
characteristic polynomial.

The work was partially supported by the Research Fellowships of the Japan Society for the
Promotion of Science for Young Scientists.
Author’s address: Department of Mathematics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku,
Yokohama, 223-8522, Japan; email: nisimura@comb.math.keio.ac.jp.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2001 ACM 1049-3301/00/1000–0348 $5.00

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000, Pages 348–357.

In Sections 2 and 3 we recall the MT recurrence relation and equidistri-
bution property. In Section 4 we show tables of parameters with 64-bit
MTs. In Section 5 we provide an implementation of 64-bit MTs in C.

2. RECURRENCE OF MERSENNE TWISTER

MT generates pseudorandom w-dimensional vectors over F2 (we identify
w-dimensional vectors over F2 with w-bit integers) by the following recur-
rence:

xk1n :5 xk1m Q ~xk
u ? xk11

l !A~k 5 0, 1, . . . !, (1)

where xk is a w-dimensional vector over F2, Q denotes the bitwise
exclusive-or operation, n is the degree of the recurrence, m is an integer
such that 1 , m , n, A is a w 3 w matrix over F2, and ~xk

u ? xk11
l ! is the

w-dimensional vector formed by concatenating the leftmost w 2 r bits of
xk with the rightmost r bits of xk11. We choose n, w and r so that nw 2 r
becomes a Mersenne exponent. We choose the form of A as follows:

A 5 1
1

1
·· ·

1
aw21 aw22 · · · · · · a0

2
This form of A makes multiplications fast [Matsumoto and Nishimura
1998, Section 2.1].

We must choose the parameters so that the characteristic polynomial of
(1) is primitive. Then the sequence generated by the recurrence (1) attains
the maximal period 2nw2r21. When nw 2 r is a Mersenne exponent, there
is an efficient algorithm, called the inverse-decimation method [Matsumoto
and Nishimura 1998], which tests primitivity quickly. We search feasible
parameters as follows: fix n, m, r, and w and select a :5 ~aw21, aw22,
. . . , a0! randomly, then check the primitivity of the characteristic polyno-
mial of (1) by the inverse-decimation method.

In addition to (1), we introduce the following slightly modified recur-
rence:

xk1n :5 xk1m2 Q xk1m1 Q xk1m0 Q ~xk
u ? xk11

l !A, ~k 5 0, 1, . . . !, (2)

where m0, m1, and m2 are integers such that 1 , m0, m1, m2 , n. It is
easy to see that we can apply the theories and algorithms in Matsumoto
and Nishimura [1998] to recurrence (2). The modification is beneficial in
that, although it decreases generating speeds, the number of nonzero terms
in the characteristic polynomial increases dramatically (see Table V).

64-bit Mersenne Twisters • 349

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

3. EQUIDISTRIBUTION PROPERTY OF MT

The equidistribution property in higher dimensions is one of the strongest
measures of the quality of pseudorandom number generators. The
k-distribution is a measure of the high dimensional equidistribution prop-
erty of a sequence generated by a linear recurrence over F2.

3.1 Definition of k-Distribution

Definition 3.1 [Tootill et al. 1973]. A pseudorandom sequence xi of w-bit
integers of period P satisfying the following condition is said to be
k-distributed to v-bit accuracy. Let truncv~x! denote the number formed by
the leading v bits of x, and consider P of the kv-bit vectors

~truncv~xi!, truncv~xi11!, . . . , truncv~xi1k21!! ~0 # i , P!. (3)

Then, each of the 2kv possible combinations of bits occurs the same number
of times in a period, except for the all-zero combination that occurs once
less often.

For each v 5 1, 2, . . . , w, let k~v! denote the maximum number such
that the sequence is k~v!-distributed to v-bit accuracy.

The geometric meaning of the above definition is as follows: Let xi :5
xi / 2w, i.e., normalize w-bit integers into real numbers in the @0, 1#
interval. Scatter the P points in the k-dimensional unit cube with coordi-
nates ~xi, xi11, . . . , xi1k21! ~i 5 0, 1, . . . , P 2 1!. We divide equally
each axis of the unit cube into 2v pieces. Thus we have partitioned the unit
cube into 2kv smaller cubes. Then the sequence is k-distributed to v-bit
accuracy if each cube contains the same number of points (except for the
cube at the origin, which contains one less). Therefore, the higher k~v! for
each v means a higher dimensional equidistribution with v-bit precision.

Note that 2k~v!v21 # P holds, since the number of possible patterns in (3) is
2k~v!v, and we admit the flaw at zero. In particular, k~v! # ~nw 2 r! / v
holds in the case of MT.

To compute k~v! for the sequences generated by recurrences (1) and (2),
we use the lattice method as in Matsumoto and Nishimura [1998]. This
method was developed by Couture et al. [1993]; Tezuka [1990; 1994a],
using the Lenstra [1985] lattice-reduction algorithm.

3.2 Tempering

The sequences generated by (1) and (2) has poor k-distribution property
[Matsumoto and Kurita 1994; Tezuka 1994b]. To improve the
k-distribution to v-bit accuracy, mainly of the most significant bits, we
multiply each generated word by a suitable w 3 w invertible matrix T
from the right (called tempering [Matsumoto and Kurita 1994]). The

350 • T. Nishimura

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

tempering matrix, which transforms x into z :5 xT, is determined implic-
itly by the following successive transformations:

y : 5 x Q ~x .. u! (4)

y : 5 y Q ~~y ,, s! AND b! (5)

y : 5 y Q ~~y ,, t! AND c! (6)

z : 5 y Q ~y .. l!, (7)

where l, s, t, and u are integers, b and c are suitable bitmasks of size
equal to the computer word size, ~x .. u! denotes the u-bit right shift of x,
and ~x ,, u! denotes the u-bit left shift of x. These transformations are
the same as those used in Matsumoto and Nishimura [1998].

Note that it is desirable that k(v) attains the trivial upper bounds ~nw
2 r! / v for each v, but MT cannot attain the bounds even after tempering,
due to obstructions in the form of recurrences (1) and (2) [Matsumoto and
Nishimura 1998]. We mention here that the L’Ecuyer [1996; 1999b] maxi-
mally equidistributed combined Tausworthe (or LFSR) generators do attain
the best possible equidistribution in all dimensions and have a lot of
nonzero terms in their characteristic polynomial. They are as fast as MT,
although they have rather smaller periods than MT.

4. TABLES

Table I shows two sets of MT parameters of 64-bit machines for recurrence
(1), with nw 2 r 5 19937, a Mersenne exponent. The parameters m, n, r,
w, and a in the table correspond to those appearing in recurrence (1). The
parameters u, s, t, l, b, and c in the table correspond to those in the
transformations (4), (5), (6), and (7). In Table I, a, b, and c are expressed in
hexadecimals. Table II shows three sets of MT parameters for 64-bit
machines for recurrence (2), with nw 2 r 5 19937.

Table I. Parameters of 64-bit MTs. Recurrence (1)

ID 1 2

m 156 156
n 312 312
r 31 31
w 64 64
u 29 29
s 17 17
t 37 37
l 41 41
a B5026F5AA96619E9 F6A3F020F058B7A7
b D66B5EF5B4DA0000 28AAF6CDBDB40000
c FDED6BE000000000 FDEDEAE000000000

64-bit Mersenne Twisters • 351

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

Table III shows the trivial upper bounds for k~v! ~1 # v # 64! when the
period is P 5 21993721 and the values of k~v! for the generators in Table I.

Table II. Parameters of 64-bit MTs. Recurrence (2)

ID 3 4 5

m0 63 55 87
m1 151 122 148
m2 224 268 241
n 312 312 312
r 31 31 31
w 64 64 64
u 26 26 26
s 17 17 17
t 33 33 33
l 39 39 39
a B3815B624FC82E2F 8EBD4AD46CB39A1E CACB98F78EBCD4ED
b 599CFCBFCA660000 656BEDFFD9A40000 A51DBEFFDA6C0000
c FFFAAFFE00000000 FDFECE7E00000000 FFEE9BF600000000

Table III. k~v! ~1 # v # 64!

ID k~1! k~2! k~3! k~4! k~5! k~6! k~7! k~8!
k~9! k~10! k~11! k~12! k~13! k~14! k~15! k~16!

k~17! k~18! k~19! k~20! k~21! k~22! k~23! k~24!
k~25! k~26! k~27! k~28! k~29! k~30! k~31! k~32!
k~33! k~34! k~35! k~36! k~37! k~38! k~39! k~40!
k~41! k~42! k~43! k~44! k~45! k~46! k~47! k~48!
k~49! k~50! k~51! k~52! k~53! k~54! k~55! k~56!
k~57! k~58! k~59! k~60! k~61! k~62! k~63! k~64!

Trivial Upper
Bound
~P 5 21993721!

19937 9968 6645 4984 3987 3322 2848 2492
2215 1993 1812 1661 1533 1424 1329 1246
1172 1107 1049 996 949 906 866 830
797 766 738 712 687 664 643 623
604 586 569 553 538 524 511 498
486 474 463 453 443 433 424 415
406 398 390 383 376 369 362 356
349 343 337 332 326 321 316 311

1 19937 9968 6645 4984 3826 3138 2511 2199
1912 1875 1570 1560 1257 1251 1249 1246
943 939 937 936 935 633 627 627
625 625 624 624 624 623 623 622
319 316 314 314 313 312 312 312
312 312 312 312 312 312 312 311
311 311 311 311 311 311 311 311
311 311 311 311 311 311 311 311

2 19937 9968 6645 4984 3835 3134 2506 2197
1901 1874 1568 1557 1253 1247 947 947
942 938 936 935 639 629 627 626
625 624 624 624 623 623 314 314
314 314 314 313 313 312 312 312
312 312 312 312 312 312 312 311
311 311 311 311 311 311 311 311
311 311 311 311 311 311 311 311

352 • T. Nishimura

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

Table IV shows k~v! for the generators of Table II. Note that k~v! for the
proposed generators degenerates for v . 32 with k~v! ' 312, whereas
k~v! for the 32-bit generator MT19937 [Matsumoto and Nishimura 1998]
degenerates for v . 16 with k~v! ' 624. Compared to the 32-bit generator,
these 64-bit generators improve the value of k~v! only for 16 , v # 32.

In Table V, the number of nonzero terms in the characteristic polynomial
is listed. Note that the degree of the characteristic polynomial of each
generator is 19937. For recurrence (1), the values are obtained from the
explicit form of the characteristic polynomial in Matsumoto and Nishimura
[1998]. For recurrence (2), the values are obtained from expression (8) in
Appendix A. It is known that generators whose characteristic polynomials

Table IV. k~v! ~1 # v # 64!

ID k~1! k~2! k~3! k~4! k~5! k~6! k~7! k~8!
k~9! k~10! k~11! k~12! k~13! k~14! k~15! k~16!

k~17! k~18! k~19! k~20! k~21! k~22! k~23! k~24!
k~25! k~26! k~27! k~28! k~29! k~30! k~31! k~32!
k~33! k~34! k~35! k~36! k~37! k~38! k~39! k~40!
k~41! k~42! k~43! k~44! k~45! k~46! k~47! k~48!
k~49! k~50! k~51! k~52! k~53! k~54! k~55! k~56!
k~57! k~58! k~59! k~60! k~61! k~62! k~63! k~64!

3 19937 9968 6645 4984 3812 3134 2496 2181
1877 1869 1569 1563 1281 1253 1250 1246
944 939 937 936 935 634 627 626
625 625 624 624 624 623 623 622
321 316 312 312 312 312 312 312
312 312 312 312 311 311 311 311
311 311 311 311 311 311 311 311
311 311 311 311 311 311 311 311

4 19937 9968 6645 4984 3816 3132 2494 2192
1898 1875 1571 1562 1275 1253 1249 1246
943 939 937 935 637 629 627 626
625 625 624 624 623 623 623 622
319 315 312 312 312 312 312 312
312 312 312 312 311 311 311 311
311 311 311 311 311 311 311 311
311 311 311 311 311 311 311 311

5 19937 9968 6645 4984 3811 3134 2515 2181
1877 1869 1569 1562 1285 1253 1250 1246
944 939 937 936 935 631 627 626
625 624 624 624 624 623 623 623
319 315 312 312 312 312 312 312
312 312 312 311 311 311 311 311
311 311 311 311 311 311 311 311
311 311 311 311 311 311 311 311

Table V. Number of Nonzero Terms in the Characteristic Polynomial

ID 1 ID 2 ID 3 ID 4 ID 5

285 319 5795 4701 6097

64-bit Mersenne Twisters • 353

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

have too few terms, such as trinomial-based GFSR, show poor randomness
(see, e.g., Compagner [1991] and Matsumoto and Kurita [1996]). Thus it is
preferable that the number of nonzero terms in the characteristic polyno-
mial be large (and not too far from a half of the degree of the characteristic
polynomial). In the case of recurrence (1), the number of terms is about
twice as much as that of the 32-bit generator MT19937. Note that, although
the number of nonzero terms in the characteristic polynomial is improved
for recurrence (2), the equidistribution property is not improved.

5. IMPLEMENTATION IN C

We now give an implementation in C of generator 3 in Table II. The
function genrand() returns a uniform pseudorandom real number in the
interval @0, 1# for each call. The function sgenrand() initializes the state
array mt[NN] using a linear congruential generator whose modulus is 264.
The multiplier is adopted from L’Ecuyer [1999a]. sgenrand() must be
called once, before calling genrand() for the first time. Note that sgen-
rand() in the C code is just an example. Users can set any values in the
state array except for the all zero state. Strictly speaking, the state
corresponds to 19937 bits in mt[NN] : the 33 most significant bits of mt[0]
and all the bits of mt[1..NN-1] .

/* Period parameters */
#define NN 312
#define M0 63
#define M1 151
#define M2 224
/* Constant vector a */
#define MATRIX_A 0xB3815B624FC82E2FULL
/* Most significant 33 bits */
#define UMASK 0xFFFFFFFF80000000ULL
/* Least significant 31 bits */
#define LMASK 0x7FFFFFFFULL

/* Tempering parameters */
#define MASK_B 0x599CFCBFCA660000ULL
#define MASK_C 0xFFFAAFFE00000000ULL
#define UU 26
#define SS 17
#define TT 33
#define LL 39

/* The array for the state vector */
static unsigned long long mt[NN];
/* mti 55NN11 means mt[NN] is not initialized */
static int mti 5NN11;

void sgenrand(unsigned long long seed)
{

unsigned long long ux, lx;

for (mti 50; mti ,NN; mti 11) {
ux 5 seed & 0xFFFFFFFF00000000ULL;

354 • T. Nishimura

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

seed 5 2862933555777941757ULL * seed 1 1ULL;
lx 5 seed .. 32;
seed 5 2862933555777941757ULL * seed 1 1ULL;
mt[mti] 5 ux | lx;

}
}

double genrand(void)
{

int i;
unsigned long long x;
static unsigned long long mag01[2] 5{0ULL, MATRIX_A};

if (mti .5 NN) {/* generate NN words at one time */
/* if sgenrand() has not been called, */
/* a default initial seed is used */
if (mti 55 NN11) sgenrand(1ULL);

for (i 50;i ,NN-M2;i 11) {
x 5 (mt[i]&UMASK) | (mt[i 11]&LMASK);
mt[i] 5 (x .. 1) ˆ mag01[(int)(x&1ULL)];
mt[i] ˆ 5 mt[i 1M0] ˆ mt[i 1M1] ˆ mt[i 1M2];

}
for (;i ,NN-M1;i 11) {

x 5 (mt[i]&UMASK) | (mt[i 11]&LMASK);
mt[i] 5 (x ..1) ˆ mag01[(int)(x&1ULL)];
mt[i] ˆ 5 mt[i 1M0] ˆ mt[i 1M1] ˆ mt[i 1M2-NN];

}
for (;i ,NN-M0;i 11) {

x 5 (mt[i]&UMASK) | (mt[i 11]&LMASK);
mt[i] 5 (x ..1) ˆ mag01[(int)(x&1ULL)];
mt[i] ˆ 5 mt[i 1M0] ˆ mt[i 1M1-NN] ˆ mt[i 1M2-NN];

}
for (;i ,NN-1;i 11) {

x 5 (mt[i]&UMASK) | (mt[i 11]&LMASK);
mt[i] 5 (x ..1) ˆ mag01[(int)(x&1ULL)];
mt[i] ˆ 5 mt[i 1M0-NN] ˆ mt[i 1M1-NN] ˆ mt[i 1M2-NN];

}
x 5 (mt[NN-1]&UMASK)|(mt[0]&LMASK);
mt[NN-1] 5 (x ..1) ˆ mag01[(int)(x&1ULL)];
mt[NN-1] ˆ 5 mt[M0-1] ˆ mt[M1-1] ˆ mt[M2-1];

mti 5 0;
}

x 5 mt[mti 11];
x ˆ 5 (x .. UU);
x ˆ 5 (x ,, SS) & MASK_B;
x ˆ 5 (x ,, TT) & MASK_C;
x ˆ 5 (x .. LL);

return ((double)x/(double)0xFFFFFFFFFFFFFFFFULL);
}

64-bit Mersenne Twisters • 355

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

APPENDIX

A. CHARACTERISTIC POLYNOMIAL OF RECURRENCE (2)

Let $xk% be a sequence generated by recurrence (2), and B be a ~nw 2 r!
3 ~nw 2 r! matrix such that

~xk1n, xk1n21, . . . , xk11
u ! 5 ~xk1n21, xk1n22, . . . , xk

u!B

holds for k 5 0, 1, . . . , i.e., B is the state transition matrix for recurrence
(2). The explicit form B is as follows:

B 5 1
0 Iw 0 0
0 0 Iw 0
···

· · ·
Iw···
Iw···
Iw···

· · ·
0 0 Iw 0
0 0 0 Iw2r

S 0 0 0

2 4 m2th block

4 m1th block

4 m0th block

4 0th block

, S :5 S 0 Ir

Iw2r 0 DA,

where Ik denotes the identity matrix of size k for any positive integer k.
Then the characteristic polynomial of recurrence (2) is det~tInw2r 2 B!. By
applying elementary transformations to ~tInw2r 2 B!, we get

det~tInw2r 2 B! 5 F w2rGr 1 a0F w2rGr21 1 · · · 1 ar22F w2rG

1 ar21F w2r 1 arF w2r21 1 · · · 1 aw22F 1 aw21, (8)

where F 5 tn 1 tm2 1 tm1 1 tm0 and G 5 tn21 1 tm221 1 tm121 1 tm021.

ACKNOWLEDGMENTS

The author thanks M. Matsumoto for his valuable advice., and also P.
L’Ecuyer for his many helpful suggestions.

REFERENCES

COMPAGNER, A. 1991. The hierarchy of correlations in random binary sequences. J. Stat.
Phys. 63, 883–896.

COUTURE, R., L’ECUYER, P., AND TEZUKA, S. 1993. On the distribution of k-dimensional vectors
for simple and combined Tausworthe sequences. Math. Comput. 60, 749–761.

356 • T. Nishimura

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

L’ECUYER, P. 1996. Maximally equidistributed combined Tausworthe generators. Math.
Comput. 65, 213, 203–213.

L’ECUYER, P. 1999a. Tables of linear congruential generators of different sizes and good
lattice structure. Math. Comput. 68, 225, 249–260.

L’ECUYER, P. 1999b. Tables of maximally equidistributed combined LFSR generators. Math.
Comput. 68, 225, 261–269.

LENSTRA, A. K. 1985. Factoring multivariate polynomials over finite fields. J. Comput. Syst.
Sci. 30, 235–248.

MATSUMOTO, M. AND KURITA, Y. 1994. Twisted GFSR generators II. ACM Trans. Model.
Comput. Simul. 4, 3 (July), 254–266.

MATSUMOTO, M. AND KURITA, Y. 1996. Strong deviations from randomness in m-sequences
based on trinomials. ACM Trans. Model. Comput. Simul. 6, 2, 99–106.

MATSUMOTO, M. AND NISHIMURA, T. 1998. Mersenne twister: A 623-dimensionally equidistrib-
uted uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8, 1,
3–30.

NIEDERREITER, H. 1993. Factorization of polynomials and some linear-algebra problems over
finite fields. Linear Alg. Appl. 192, 301–328.

NIEDERREITER, H. 1995. The multiple-recursive matrix method for pseudorandom number
generation. Finite Fields Appl. 1, 3–30.

TEZUKA, S. 1990. Lattice structure of pseudorandom sequences from shift register generators.
In Proceedings of the 1990 Winter Conference on Simulation (WSC ’90, New Orleans, LA,
Dec.). ACM Press, New York, NY, 266–269.

TEZUKA, S. 1994a. The k-dimensional distribution of combined GFSR sequences. Math.
Comput. 62, 206 (Apr.), 809–817.

TEZUKA, S. 1994b. A unified view of long-period random number generators. J. Oper. Res.
Japan Soc. 37, 211–227.

TOOTILL, J. P. R., ROBINSON, W. D., AND EAGLE, D. J. 1973. An asymptotically random
Tausworthe sequence. J. ACM 20, 469–481.

Received: July 1999; revised: March 2000; accepted: March 2000

64-bit Mersenne Twisters • 357

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

